

Provides protection for motors and other sensitive loads. Continuously measures the voltage of each of the three phases using a microcontroller circuit design that senses under and overvoltage, voltage unbalance, phase loss, and phase reversal. Protection is provided even when regenerated voltages are present. Includes a trip delay to prevent nuisance tripping and a restart delay to prevent short cycling after a momentary power outage.

For more information see:

Appendix B, page 167, Figure 30 for dimensional drawing. Appendix C, page 168, Figure 14 for connection diagram.

Operation

Upon application of line voltage, the restart delay begins. The output is de-energized during restart delay. Under normal conditions, the output energizes after the restart delay. Undervoltage, overvoltage, and voltage unbalance must be sensed for the complete trip delay period before the output de-energizes. The restart delay begins as soon as the output de-energizes. If the restart delay is completed when a fault is corrected, the output energizes immediately. The output will not energize if a fault is sensed as the input voltage is applied. If the voltage selector is set between two voltage marks (i.e. between 220 and 230V), the LED will flash red rapidly. The TVW provides fault protection at the lower of the two line voltages (i.e. 220V).

Reset: Reset is automatic upon correction of a fault.

LED Operation

The LED flashes green during the restart delay, then glows green when the output energizes. It flashes red during the trip delay then glows red when the output de-energizes. It flashes red/green if phase reversal is sensed. If the voltage selector knob is between settings, it rapidly flashes red.

Features:

- Protects against phase loss & reversal; over, under & unbalanced voltages; short cycling
- Fixed trip points & delays
- Adjustable voltages from 208 to 480VAC in 4 ranges
- Monitor 600VAC lines by connecting VRM accessory
- Isolated, 10A, SPDT output contacts
- Bi-color LED indicates: output status, faults, time delays, phase reversal & setpoint
- ASME A17.1 rule 210.6
- NEMA MG1 14:30, 14:35
- IEEE C62.41-1991 Level B

Approvals: (E 🕦 🏽

Auxilary Products:

- 3-phase fuse block/disconnect: P/N: FH3P
- 2 Amp fuse: P/N: P0600-11
- **DIN rail:** P/N: C103PM (AI)
- Female quick connect:
 P/N: P1015-13 (AWG 10/12)
 P/N: P1015-64 (AWG 14/16)
 P/N: P1015-14 (AWG 18/22)
- Voltage reduction module: P/N: VRM6048

Available Models:

TVW575S1M TVW6510S0.4S TVW9510S0.4S

If desired part number is not listed, please call us to see if it is technically possible to build.

Order Table:

TVW

Line Voltage
Wide Range
-5 - 208-240VAC
Selectable

-6 - 208, 220, 230 & 240VAC -8 - 380, 400 & 415VAC -9 - 430, 440, 460 & 480VAC Voltage Unbalance Fixed - Specify 4-10% in 1% increments

Trip Delay*

-Fixed - Specify from 0.2-1s in 0.1s increments

-Fixed - Specify from 1-100s in 1s increments

*Must indicate (S) for secs. or (M) for mins.

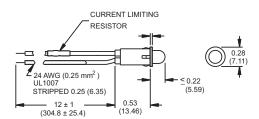
Restart Delay*

-Fixed - Specify from **0.4-1**s in 0.1s increments

-Fixed - Specify from **1-100**s in 1s increments

-Fixed - Specify from **1-999**min in

1min increments


Specifications

Line Voltage		
Type	3-phase delta or wye with no connection to neutral	
Input Voltage/Tolerance	208 to 480VAC in 4 ranges/-30% - 20%	
AC Line Frequency	50 - 100 Hz	
Phase Sequence	ABC	
Power Consumption	Approx. 2W for 240V units	
-	Approx. 3W for 480V units	
Overvoltage, Undervoltage, & Voltage Unbalance		
Overvoltage & Undervoltage	Voltage detection with delay trip & automatic	
	reset	
Undervoltage Trip Point	88 - 92% of the selected line voltage	
Reset Voltage	≅ +3% of trip voltage	
Overvoltage Trip Point	109 - 113% of the selected line voltage	
Reset Voltage	≅ -3% of trip voltage	
Trip Variation vs Temperature	≤ ±2%	
Voltage Unbalance	Factory fixed, from 4 - 10%	
Reset On Balance	≅ -0.7% unbalance	
Trip Delay Range	Fixed from 0.2 - 100s ±15% or ±0.1s,	
	whichever is greater	
Restart Delay Range	Fixed from 0.4s - 999m ±15% or ±0.2s,	
	whichever is greater	

	Phase Reversal & Phase Loss Response ≤ 200ms; automatic reset	
1	l Phase Loss≥ 25% unbalance	
	Output	
	Type	
	Rating 208 to 240VAC (55°C) 10A resistive @ 125VAC, 5A @ 250V 1/4 hp @ 125VAC	AC,
	380 to 480VAC	
С	c Life	
	Protection	
	Surge IEEE C62.41-1991 Level B	
	Dielectric Breakdown 208 to 240VAC≥ 1500V RMS input to output termin	nals
	380 to 480VAC ≥ 2500V RMS input to output termin	
	Mechanical	
	Mounting Surface mount with one #8 (M5 x 0.	8) screw
	Dimensions	
	Termination	
	terminals	Ct
	Environmental	
	Operating / Storage Temperature40° to 55°C / -40° to 85°C	
	Humidity95% relative, non-condensing	
	Weight $\approx 2.8 \text{ oz} (79 \text{ g})$	

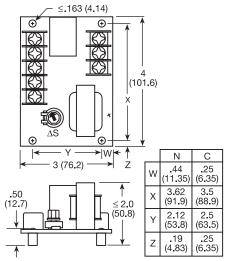
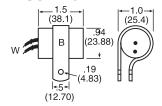
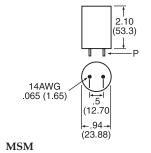
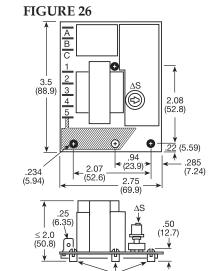
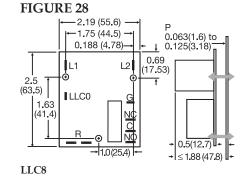

Appendix B - Dimensional Drawings

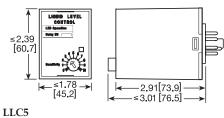
FIGURE 24




LPM


FIGURE 27





LLC1

NS I.D. = ≤.163 (4.14)

NS = Nylon Standoffs

LLC2

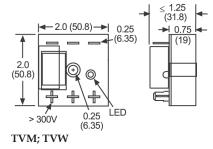


FIGURE 32

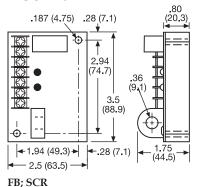
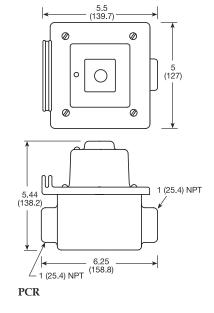
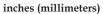
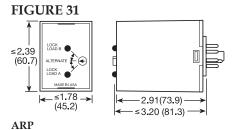
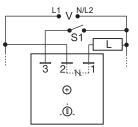





FIGURE 33



Appendix C - Connection Diagrams

FIGURE 1 - FSU1000 Series

S1 = Optional low current switch V = Voltage L = Load

FIGURE 2 - FS100 Series

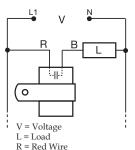


FIGURE 3 - FS100 Series

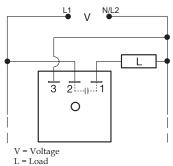
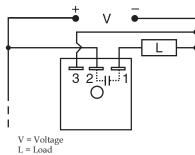


FIGURE 4 - FS200 Series



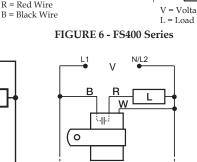
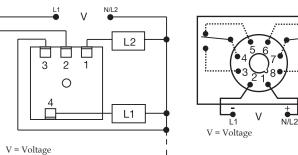


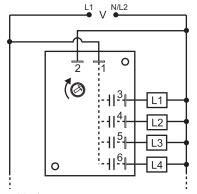
FIGURE 8 - FS500 Series

FIGURE 5 - FS300 Series



V = VoltageL = Load R = Red Wire

FIGURE 7 - AF Series


L = Load

B = Black Wire W= White Wire

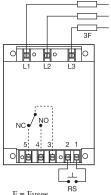
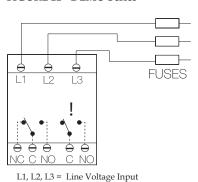
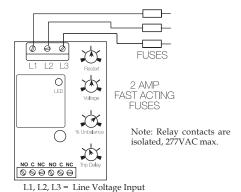

FIGURE 11 - DLMU Series

FIGURE 9 - SC3/SC4 Series

for SC3, terminal 6 & load L4 are eliminated.


FIGURE 10 - WVM Series

F = Fuses


NO = Normally Open NC = Normally Closed RS = Optional Remote Reset Switch Relay contacts are isolated.

CAÚTION: 2 amp max fast acting fuses must be installed externally in series with each input. (3)

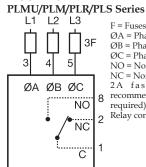
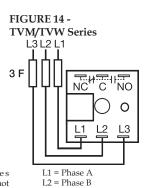

NO = Normally Open Contact NC = Normally Closed Contact C = Common, Transfer Contact CAUTION: 2 amp max. fast acting fuses are recommended to protect the equipment's wiring. They are not required to protect the DLMU. ! = Select alarm contact connection as N.O. or N.C. when ordering; N.O. Shown.

FIGURE 12 - HLMU Series



NO = Normally Open Contact NC = Normally Closed Contact C = Common, Transfer Contact CAUTION: 2 amp max. fast acting fuses are recommended to protect the equipment's wiring. They are not required to protect the HLMU.

FIGURE 13 -

F = Fuses \emptyset A = Phase A = L1 \emptyset B = Phase B = L2 \emptyset C = Phase C = L3 NO = Normally Open NC = Normally Closed 2A fast acting fuses recommended for safety (not required) Relay contacts are isolated.

L3 = Phase C NO = Normally Open NC = Normally Closed C = Common, Transfer Contact

Relay contacts are isolated. F = 2A Fast acting fuses are recommended, but not required